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Abstract
An exact solution of the Dirac equation for a particle whose potential energy
and mass are inversely proportional to the distance from the force centre has
been found. The bound states exist provided the length scale a which appears in
the expression for the mass is smaller than the classical electron radius e2/mc2.
Furthermore, bound states also exist for negative values of a even in the absence
of the Coulomb interaction. In first order perturbation theory the corrections to
the energy caused by the terms of dipole nature in the expression for the mass
are calculated. Quasirelativistic expansion of the energy has been carried out,
and a modified expression for the fine structure of the energy levels has been
obtained. The problem of kinetic energy operator in the Schrödinger equation
is discussed for the case of position-dependent mass. In particular, we have
found that for highly excited states the mutual ordering of the inverse mass and
momentum operator in the non-relativistic theory is not important.

PACS numbers: 03.65.Fd, 03.65.Pm

1. Introduction

The concept of the effective mass in theoretical physics is quite efficient because it allows us to
reduce a many-body problem to a single-particle one, without the loss of the main contributions
to the mechanism of the formation of various physical phenomena from the inter-particle
interactions. We can exemplify this statement by specific problems from semiconductor
physics, superfluid 4He theories, problems of nanophysics as well as by a number of other
problems from condensed matter physics [1–5]. At the same time, the suggested approach
raises the issue of mutual ordering of the momentum operator in the Schrödinger equation
and the inverse effective mass in the kinetic energy operator, which is the momentum function
of the particle coordinate [6–11]. This problem seems to disappear if one proceeds from the
Dirac equation, but the transition to the non-relativistic case is far from being simple as it
might look at first glance [8].
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In this paper we suggest a solution of the Kepler problem (i.e., a study of the particle’s
movement in the Coulomb potential) in Dirac theory for a particle with a given effective mass
m∗ dependent on coordinate r. We assume this dependence to be relevant at distances of the
particle from the force centre smaller than the Compton length λ = h̄/mc, where m is the
mass m∗ at r → ∞. For such distances the notion of the particle coordinate is lost as attempts
to localize the particle in the space domain with linear dimensions ∼λ lead to the creation of
new particles. In this connection, it seems possible to try and take effectively into account the
processes of the interaction of the particles with the force centre at subatomic scales through
a coordinate-dependent mass.

In the general case, we assume that, e.g., for an electron the value of m∗ can be presented
in the form of a multipole expansion

m∗ = m

(
1 +

a

r
+

br
r3

+ · · ·
)

, (1.1)

where a, b, . . . are constants formed by the mechanism of the particle interaction with the
vacuum fluctuations in the presence of the force centre; later on we consider these constants to
be the given initial parameters of the problem. The processes of the interaction at subatomic
scales within quantum field theory lead, in particular, to the deformation of the Coulomb
interaction in the atom when the distance between the electron and the nucleus is small. In
other words, it is quite possible to consider the electron charge as a function of the particle
coordinate. We can therefore speak about the effective consideration, in Dirac theory, of the
radiation effects which are due to the renormalization of the electron mass and charge; that is
why we can make an attempt to account, within such a phenomenological approach, for the
observable superfine structure of the atom energy spectrum.

The above-mentioned arguments can be disregarded. Then, one treats the Dirac equation
formally as a mathematical problem in which the mass m∗ is dependent on the radius vector r.

Below, we provide an exact solution of the Kepler problem in Dirac theory for the case
when only the first two terms are taken into account in the expansion for the effective mass
(1.1). Such a problem was considered in [12] within another problem of the so-called mixed
vector–scalar potentials in the Dirac equation. We propose an approach differing from that
of [12]. Additionally, the dipole term in (1.1) is taken into account by means of perturbation
theory. We investigate also the non-relativistic contribution of the position-dependent mass to
the energy levels.

2. Initial equations

We start from the Dirac equation (in familiar notation), i.e.,

[(α̂p̂)c + m∗c2β̂ + U ]ψ = Eψ, (2.1)

where α̂, β̂ are the Dirac matrices, the particle effective mass is

m∗ = m
[
1 +

a

r
+ (σ̂n)ϕ

]
, (2.2)

ϕ = ϕ(r) and the energy of the Coulomb interaction is

U = −e2

r
, (2.3)

where e is the particle charge, and σ̂ means a 4 × 4 matrix:

σ̂ →
(

σ̂ 0
0 σ̂

)
,
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where the diagonal items are the usual Pauli matrices, n = r/r is a unit vector. Since the spin
is the only vector characterizing a particle, it is natural to assume that in equation (1.1) the
vector b ∼ σ. In addition, since (σ̂n)2 = 1, the higher powers of σ̂ are absent in (1.1). This
fact explains the dependence (2.2).

In the following we calculate the energy spectrum E. To do this, we introduce the function
ψ̄ so that

ψ = [(α̂p̂)c + m∗c2β̂ + (E − U)]ψ̄, (2.4)

that is, we apply the substitution used also in [13–15]. For the new function ψ̄ from the Dirac
equation (2.1) we find

{[(α̂p̂)c + m∗c2β̂]2 − c[(α̂p̂)U − U(α̂p̂)] − (E − U)2}ψ̄ = 0. (2.5)

It is easy to see that the commutator

[α̂p̂, U ] = −ih̄(σn)β̂ ′ dU

dr
,

and

[(α̂p̂)c + m∗c2β]2 = p̂2c2 + m∗2c4 − ih̄c3(σ∇m∗)β̂ ′′, (2.6)

where

β̂ ′ =
(

0 I

I 0

)
, β̂ ′′ =

(
0 −I

I 0

)
(2.7)

are 4 × 4 matrices.
Our initial equation (2.5) now takes the following form:{

p̂2c2 + m∗2c4 − ih̄c3(σ∇m∗)β̂ ′′ + ih̄c(σn)β̂ ′ dU

dr
− (E − U)2

}
ψ̄ = 0. (2.8)

Using explicit expressions for m∗ and U (see equations (2.2), (2.3)), we obtain, after
simple calculations,{

p̂2

2m
−

(
E

mc2
e2 − mc2a

)
1

r
+

1

2mr2

[
ih̄

c
(σn)(mc2aβ̂ ′′ + e2β̂ ′) + m2c2a2 − e4

c2
+ Ŵ

]}
ψ̄

=
(

E2 − m2c4

2mc2

)
ψ̄, (2.9)

where

Ŵ = mc2

2
ϕ2 + mc2ϕ

(
1 +

a

r

)
(σn) − ih̄c

2r2

d

dr
(r2ϕ)β̂ ′′. (2.10)

We note that our equation has the form of the Schrödinger equation for a particle moving in
the Coulomb potential with an addition to the centrifugal energy. Operator Ŵ is considered
as a perturbation.

3. The radial equation

We now pass to spherical coordinates in equation (2.9):{
− h̄2

2m

1

r

d2

dr2
r +

1

2mr2

[
L̂2 +

ih̄

c
(σn)(mc2aβ̂ ′′ + e2β̂ ′) + m2c2a2 − e4

c2

]

−
(

Ee2

mc2
− mc2a

)
1

r
+ Ŵ

}
ψ̄ = E2 − m2c4

2mc2
ψ̄, (3.1)

where L̂ is the angular momentum operator.
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As the operator in square brackets depends solely on the angles, the variables in
equation (3.1) can be separated. We further make use of the fact that

L̂2 = (σL̂)[(σL̂) + h̄],

and introduce the operator

�̂ = −[(σL̂) + h̄] +
i

c
(σn)(mc2aβ̂ ′′ + e2β̂ ′), (3.2)

with

�̂2 = [(σL̂) + h̄]2 + m2c2a2 − e4/c2.

We have used here the fact that

[L̂n] + [nL̂] = 2ih̄n.

It is now not difficult to show that the operator in square brackets in equation (3.1) equals
�̂(�̂ + h̄). Then, we rewrite equation (3.1) as follows:{
− h̄2

2m

1

r

d2

dr2
r +

�̂(�̂ + h̄)

2mr2
−

(
E

mc2
e2 − mc2a

)
1

r
+ Ŵ

}
ψ̄ = E2 − m2c4

2mc2
ψ̄. (3.3)

As (σ̂L̂) = (Ĵ2 − L̂2 − Ŝ2)/h̄, where the total angular momentum Ĵ = L̂ + Ŝ, and the spin
operator Ŝ = h̄σ̂/2, it is easy to see that the operator

�̂2 =
(

Ĵ2 − L̂2 − Ŝ2

h̄
+ h̄

)2

+ (mca)2 −
(

e2

c

)2

.

It then follows that the eigenvalues of this operator

�2 = h̄2

[
j (j + 1) − l(l + 1) +

1

4

]2

+ (mca)2 −
(

e2

c

)2

,

j = l ± 1/2, l = 0, 1, 2, . . . .

Further, if j = l + 1/2, then

�2 = h̄2(l + 1)2 + (mca)2 − (e2/c)2,

and if j = l − 1/2, then

�2 = h̄2l2 + (mca)2 − (e2/c)2.

Now it is not difficult to find the eigenvalues of the operator �̂ (3.2):

� = −h̄
√

(l + 1)2 + (mca/h̄)2 − (e2/h̄c)2,

for j = l + 1/2 and

� = h̄
√

l2 + (mca/h̄)2 − (e2/h̄c)2,

for j = l − 1/2. Finally, we can easily find the eigenvalues of the operator �̂(�̂ + h̄):

�(� + h̄) = h̄2l∗(l∗ + 1),

where the quantum number

l∗ =
√

(j + 1/2)2 + (mca/h̄)2 − (e2/h̄c)2 − 1/2 ∓ 1/2. (3.4)

In equation (3.4), the upper sign is for j = l + 1/2 while the lower sign is for j = l − 1/2.
If the perturbation operator is not taken into account, Ŵ = 0, substituting the operator

�̂(�̂ + h̄) with its eigenvalues in equation (3.3), we can write down the equation for the radial
part R of ψ̄ :{

− h̄2

2m

1

r

d2

dr2
r +

h̄2l∗(l∗ + 1)

2mr2
−

(
E

mc2
e2 − mc2a

)
1

r

}
R = E2 − m2c4

2mc2
R. (3.5)
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4. Energy eigenvalues: discussion of the results

Formally, equation (3.5) coincides with the non-relativistic Schrödinger equation for the Kepler
problem with the energy

E∗ = E2 − m2c4

2mc2

and the charge squared

e∗2 = E

mc2
e2 − mc2a. (4.1)

For the existence of the bound states, it is necessary that the ‘potential energy’ in
equation (3.5) should be of the attractive nature or, otherwise said, the charge squared e∗2

should be a positive value e∗2 > 0.
Then one can write the Bohr formula for the energy levels E∗:

E∗ = − me∗4

2h̄2(nr + l∗ + 1)2
, (4.2)

where nr = 0, 1, 2, . . . is the radial quantum number, hence, the equation for E

E2 − m2c4

2mc2
= −m(Ee2/mc2 − mc2a)2

2h̄2n∗2
,

where we introduced the ‘principal’ quantum number

n∗ = nr + l∗ + 1 = nr +
√

(j + 1/2)2 + (a/λ)2 − α2 + 1/2 ∓ 1/2,

where α = e2/h̄c is the fine structure constant and λ = h̄/mc is the Compton length.
Solving this equation, we finally find for the energy spectrum

E = mc2

1 + (α/n∗)2

[
a

λ

α

n∗2
+

√
1 +

α2 − (a/λ)2

n∗2

]
. (4.3)

The wavefunctions R are the usual radial functions of the non-relativistic hydrogen
problem with the quantum numbers n∗, l∗ and with the charge squared e∗2. In order
to determine the full wavefunction ψ , it is necessary to substitute the function ψ̄ into
equation (2.4) in the form of the product of the radial function R and the spherical spinor.

Within another problem of vector–scalar potentials in the Dirac equation, expression (4.3)
was first found in [12] using a usual reduction of the equation to a set of two equations
followed then by a standard expansion of radial functions into powers of r. We have solved
the problem by another method, namely, reducing it to a formally non-relativistic one with
respectively renormalized physical quantities and quantum numbers. This method, in our
opinion, provides the possibility of solving the eigenvalue problem with more complicated
dependences m∗ = m∗(r).

The bound states exist when e∗2 > 0. For a < 0 this condition, as seen from (4.1), always
holds true. For a > 0, using in equation (4.1) the energy E from equation (4.3), we find the
condition for the parameter a that appears not to depend on the quantum number n∗. The
result is

a < e2/mc2.

Thus the bound states exist for arbitrary negative values of the parameter a. If the length
parameter a > 0, it should be smaller than the electron classical radius. In other words, these
are the distances 1/α � 137-fold smaller than the Compton length λ, where the well-defined
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notion of the particle coordinate is lost. It is interesting to note that for a = e2/mc2 the energy
E = mc2, hence, there is just one level.

On the other hand, if the parameter a = 0, then from equation (4.3) we get the well-known
formula for a fine structure of the hydrogen atom energy spectrum, for which there is the exact
solution of the Dirac equation.

In the absence of the Coulomb interaction (e2 = 0), the bound states exist for a < 0 with
the energy levels

E = mc2

√
1 −

( a

λn∗
)2

,

where the quantum number l∗, contained in n∗, is determined by equation (3.4) for e2 = 0.
For the ground state, for n∗ =

√
1 + (a/λ)2 − α2, one obtains from equation (4.3)

E = mc2

1 + (a/λ)2

[a

λ
α +

√
1 + (a/λ)2 − α2

]
.

For α = 0 the ground state energy (a < 0)

E = mc2√
1 + (a/λ)2

.

This quantity plays the role of the particle rest energy; thus, the mean value of the effective
mass, i.e.,

m∗ = m√
1 + (a/λ)2

is smaller than the mass m, which corresponds to the negative parameter a. If parameter
|a| � λ, then the ground state energy E = h̄c/|a| is of the nature of the Casimir energy
concentrated in the volume ∼|a|3.

Let us now consider the non-relativistic limit c → ∞. It is important for the revealing
of the mechanism of the transition to the non-relativistic description of the particle with a
position-dependent mass. We assume that the natural length scale for the quantity a is the
classical radius of the electron, which, in our problem, is the upper limit for a; hence we
put a = āe2/mc2, ā < 1. We believe that the numeric value of ā does not depend on any
fundamental constants, and that, ultimately, this value is the initial characteristic of the particle.
Now the formula for the energy takes the form

E = mc2

1 + (α/n∗)2

[( α

n∗
)2

ā +

√
1 +

( α

n∗
)2

(1 − ā2)

]
,

n∗ = nr +

√(
j +

1

2

)2

+ α2(ā2 − 1) +
1

2
∓ 1

2
.

(4.4)

We expand this expression in power series over α up to α2:

E = mc2 − me4

2h̄2n2
(1 − ā)2 − me4

2h̄2n4
α2(1 − ā)3

[
n

j + 1/2
(1 + ā) − 3

4
(1 + ā/3)

]
, (4.5)

where n = nr + l + 1 is the principal quantum number. For ā = 0 we have the familiar fine
structure formula. As we can see, the dependence of the mass on the coordinate also deforms
the non-relativistic term (i.e., the Bohr formula) in such a way as if the particles mass had been
substituted with m(1−ā)2. For ā > 0 this effect has the same sign as the correction accounting
for the finiteness of the nucleus mass. The degeneracy of terms, in particular, S1/2 and P1/2,
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holds because we have the specific dependence of the mass on r. If, in expansion (1.1),
we also left the next terms, this degeneracy would be removed.

Let us calculate the correction of the perturbation operator Ŵ into the energy levels (4.3).
To do this, we refer to equation (3.3), and in the first order of the perturbation theory instead
of (4.2), one has

E∗ = − me∗4

2h̄2n∗2
+ 〈Ŵ 〉,

where the angle brackets denote the averaging over the wavefunctions of the non-perturbed
problem. In this way, we arrive again at the equation for the energy E. Substituting the energy
in the form E = E(0) + E(1) into equation (4.6), where E(0) is given by (4.3), we find for the
first-order correction E(1) the following:

E(1) = 〈Ŵ 〉
/√

1 +
α2 − (a/λ)2

n∗2
. (4.6)

If the function ϕ is of a nature given by equation (1.1),

ϕ = b2

r2
,

b = const, then the last term in equation (2.10) for the operator Ŵ equals zero and the mean
value of the second term in Ŵ also equals zero. Therefore, the contribution into E(1) is formed
solely by the first term in the expression for Ŵ . Using the mean value of 1/r4 averaged over
the hydrogen wavefunctions [16], we find the explicit form of the correction to the energy
(l∗ > 1/2)

E(1) = me4

2h̄2 b̄4α2

(√
1 + α2(1 − ā2)/n∗2 − ā

)4

(1 + α2/n∗2)4
√

1 + α2(1 − ā2)/n∗2

3n∗2 − l∗(l∗ + 1)

2n∗5(l∗ + 3/2)(l∗ + 1)l∗(l∗2 − 1/4)
,

(4.7)

where b̄ = b/λ. Therefore, the degeneracy with respect to the orbital quantum number l still
holds in first order perturbation theory. It disappears only in second order perturbation theory
due to the second term in Ŵ .

5. Conclusion

We have found the exact solution of the Dirac equation for a particle with position-dependent
mass, which might be useful in the study of the corresponding non-relativistic problem as
a reference result. The next terms, which we have neglected in this work (in particular the
dipolar one) and which are responsible for the super-fine structure of the energy spectrum, can
be taken into account by means of standard perturbation theory.

Let us return to the ordering problem in the kinetic energy operator in the Schrödinger
equation when the mass of the particle depends on the coordinate. We have already seen that
the corrections from this dependence for the non-relativistic limit are due to the fact that in the
mass this dependence happens to be ∼1/c2. The mechanism of the appearance of the above-
said correction is quite simple. The particle rest energy is m∗c2 = mc2(1 + āe2/mc2r) =
mc2 + āe2/r . In the linear approximation, according to perturbations theory, this energy is
(mc2 + ā〈e2/r〉) = mc2 + āe2/aBn2 = mc2 + āme4/h̄2n2, where aB = h̄2/me2 is the Bohr
radius. This expression, together with the zeroth approximation for E, in accordance with
the Bohr formula, yields mc2 − me4(1 − 2ā)/2h̄2n2, which, in the linear approximation in ā,
coincides with formula (4.5). In other words, only on condition that the dependence of the
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mass on the coordinate is ∼1/c2, do we deform the non-relativistic expression for the energy
levels. At the same time, it is irrelevant how we order the momentum operator with the inverse
mass in the kinetic energy operator because the corrections are of the order of 1/c2.

Thus, the issue of the form of the kinetic energy in the Schrödinger equation for position-
dependent mass has, in the general case, quite a limited sense. If this dependence arises in
the non-relativistic case, as a result of the reduction of the many-particle problem to a single-
particle one, or as problems in curved space, the specific ordering of the operators appears
rather naturally in each problem. As a consequence, the energy levels, which depend on some
ordering parameter, differ from problem to problem. This has been shown in [17], where
the Schrödinger equation with the Coulomb potential is solved with some other dependence
of the mass on the radial variable. Yet it is important that for highly excited states, i.e., for
large values of quantum numbers, the dependence of the energy on the ordering ‘parameter’ is,
probably, insignificant, and the energy can be found using the quasiclassical Bohr–Sommerfeld
quantization method. For instance, for the dependence of m∗ on r given by equation (2.2) the
direct solution of the Schrödinger equation, in which 1/

√
m∗ stands leftwards and rightwards

of the momentum square, obviously yields the same energy levels as the Bohr–Sommerfeld
method. Finally, there is also another argument in support of our theory, which follows from
the results of [17], that for large quantum numbers the energy does not depend on the inverse
mass and momentum ordering ‘parameter’.
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